Optimizing the LU Factorization for Energy Efficiency on a Many-Core Architecture

نویسندگان

  • Elkin Garcia
  • Jaime Arteaga
  • Robert S. Pavel
  • Guang R. Gao
چکیده

Power consumption and energy efficiency have become a major bottleneck in the design of new systems for high performance computing. The path to exa-scale computing requires new strategies that decrease the energy consumption of modern many-core architectures without sacrificing scalability or performance. The development of these strategies demands the use of scalable models for energy consumption and the reorientation of optimization techniques to focus on energy efficiency, evaluating their trade-offs with respect to performance. In this paper, we investigate several optimization techniques to reduce the energy consumption on many-core architectures with a softwaremanaged memory hierarchy. We study the impact of these techniques on the Static Energy and the Dynamic Energy of the LU factorization benchmark using a scalable energy consumption model. The main contributions of this paper are: (1) The modeling and analysis of energy consumption and energy efficiency for LU factorization; (2) the study and design of instruction-level and task-level optimizations for the reduction of the Static and Dynamic Energy; (3) the design and implementation of an energy aware tiling that decreases the Dynamic Energy of power hungry instructions in the LU factorization benchmark; and (4) the experimental evaluation of the scalability and improvement in terms of energy consumption and power efficiency of the proposed optimizations using the IBM Cyclops-64 many-core architecture. We study the trade-offs between performance and power efficiency for the proposed optimizations. Our results for the LU factorization benchmark, using 156 hardware thread units, show an improvement in power efficiency between 1.68X and 4.87X for different matrix sizes. In addition, we point out examples of optimizations that scale in performance but not necessarily in power efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-Low-Energy DSP Processor Design for Many-Core Parallel Applications

Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...

متن کامل

THE USE OF SEMI INHERITED LU FACTORIZATION OF MATRICES IN INTERPOLATION OF DATA

The polynomial interpolation in one dimensional space R is an important method to approximate the functions. The Lagrange and Newton methods are two well known types of interpolations. In this work, we describe the semi inherited interpolation for approximating the values of a function. In this case, the interpolation matrix has the semi inherited LU factorization.

متن کامل

On the WZ Factorization of the Real and Integer Matrices

The textit{QIF}  (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ}  factorization. The  WZ factorization can be faster than the textit{LU} factorization  because,  it performs the simultaneous evaluation of two columns or two rows. Here, we present a  method for computing the real and integer textit{WZ} and  textit{ZW} factoriz...

متن کامل

Thermal Behavior of Double Skin Facade in Terms of Energy Consumption in the Climate of North of Iran-Rasht

Industrialization and increasing demand for the consumption of fossil fuels cause that energy becomes a strategic factor. Energy crisis and the emergence of modern architecture led designers to pay more attention to the important task of building's envelope. Building skins play an important role in building thermal behavior and reduce energy consumption. If Double Skin Facades properly designed...

متن کامل

Tiled Algorithms for Matrix Computations on Multicore Architectures

Current computer architecture has moved towards the multi/many-core structure. However, the algorithms in the current sequential dense numerical linear algebra libraries (e.g. LAPACK) do not parallelize well on multi/many-core architectures. A new family of algorithms, the tile algorithms, has recently been introduced to circumvent this problem. Previous research has shown that it is possible t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013